Computer Science Y7
Unit 1Computational Thinking

Lesson 1
Computational Thinking

What is computational thinking?

Computers can be used to help us solve problems. However, before a problem can
be tackled, the problem itself and the ways in which it could be solved need to be
understood. Computational thinking allows us to do this.

The four cornerstones of computational thinking

decomposition - breaking down a complex problem or system into smaller, more
manageable parts

pattern recognition — looking for similarities among and within problems
abstraction — focusing on the important information only, ignoring irrelevant
detail

algorithms - developing a step-by-step solution to the problem, or the rules to
follow to solve the problem

Each cornerstone is as important as the others. They are like legs on a table - if one
leg is missing, the table will probably collapse. Correctly applying all four techniques
will help when programming a computer.

Com putatlonal thinking

Decomposition Abstraction

©
n
m:

Pattern recognition

A complex problem is one that, at first glance, we don't know how to solve easily.
Computational thinking involves taking that complex problem and breaking it down into
a series of small, more manageable problems (decomposition). Each of these
smaller problems can then be looked at individually, considering how similar problems
have been solved previously (pattern recognition) and focusing only on the important
details, while ignoring irrelevant information (abstraction). Next, simple steps or rules
to solve each of the smaller problems can be designed (algorithms).

Finally, these simple steps or rules are used to program a computer to help solve the
complex problem in the best way.

Computational thinking enables you to work out exactly what to tell the
computer to do.

For example, if you agree to meet your friends somewhere you have never been
before, you would probably plan your route before you step out of your house. You
might consider the routes available and which route is ‘best’ - this might be the route
that is the shortest, the quickest, or the one which goes past your favourite shop on
the way. You'd then follow the step-by-step directions to get there. In this case, the
planning part is like computational thinking, and following the directions is like
programming.

Being able to turn a complex problem into one we can easily understand is a skill that
is extremely useful. In fact, it's a skill you already have and probably use every day.

For example, it might be that you need to decide what to do with your group of friends.
If all of you like different things, you would need to decide:

what you could do

where you could go

who wants to do what

what you have previously done that has been a success in the past
how much money you have and the cost of any of the options

what the weather might be doing

how much time you have

From this information, you and your friends could decide more easily where to go and
what to do — in order to keep most of your friends happy. You could also use a
computer to help you to collect and analyse the data to devise the best solution to the
problem, both now and if it arose again in the future, if you wished.

Another example might occur when playing a videogame. Depending on the game, in
order to complete a level you would need to know:
e what items you need to collect, how you can collect them, and how long you
have in which to collect them

e Where the exit is and the best route to reach it in the quickest time possible
e what kinds of enemies there are and their weak points

From these details you can work out a strategy for completing the level in the most
efficient way.

If you were to create your own computer game, these are exactly the types of
guestions you would need to think about and answer before you were able to
program your game.

Q045 TOP-0376S

Both of the above are examples of where computational thinking has been used to
solve a complex problem:
e each complex problem was broken down into several small decisions and steps
(eg where to go, how to complete the level — decomposition)
« only the relevant details were focused on
(eg weather, location of exit — abstraction)
« knowledge of previous similar problems was used
(pattern recognition...to work out a step by step plan of action (algorithms)

What is decomposition?

Decomposition is one of the four cornerstones of Computer Science. It involves
breaking down a complex problem or system into smaller parts that are more
manageable and easier to understand. The smaller parts can then be examined
and solved, or designed individually, as they are simpler to work with.

=

ot

o °:

O:

o e
= Ny

O @0 O

(oX][eX]

O ®|® 0

O @00

Why is decomposition important?

If a problem is not decomposed, it is much harder to solve. Dealing with many different
stages all at once is much more difficult than breaking a problem down into a number
of smaller problems and solving each one, one at a time. Breaking the problem down
into smaller parts means that each smaller problem can be examined in more detail.

Similarly, trying to understand how a complex system works is easier using
decomposition. For example, understanding how a bicycle works is more
straightforward if the whole bike is separated into smaller parts and each part is
examined to see how it works in more detail.

Example 1: Brushing our teeth

To decompose the problem of how to brush our teeth, we would need to consider:

which toothbrush to use

how long to brush for?

how hard to press on our teeth?
what toothpaste to use

Example 2: Solving a crime

It is only normally when we are asked to do a new or more complex task that we
start to think about it in detail — to decompose the task.

Imagine that a crime has been committed. Solving a crime can be a very complex
problem as there are many things to consider.

For example, a police officer would need to know the answer to a series of smaller
problems:

what crime was committed

when the crime was committed

where the crime was committed

what evidence there is

if there were any witnesses

if there have recently been any similar crimes

The complex problem of the committed crime has now been broken down into
simpler problems that can be examined individually, in detalil.

Location

DIAMOND

JEWEL
THIEF

Evidence

Decomposing creating an app

Imagine that you want to create your first app. This is a complex problem - there are
lots of things to consider.

How would you decompose the task of creating an app?

https://www.bbc.co.uk/education/guides/zqqfyrd/revision/2#glossary-zp8thyc

Lesson 3
What is pattern recognition?

Computational thinking
Decomposition Abstraction
=

N

+

O

What are patterns?

Imagine that we want to draw a series of cats.
All cats share common characteristics. Among other things they all have eyes, tails
and fur. They also like to eat fish and make meowing sounds.

Because we know that all cats have eyes, tails and fur, we can make a good attempt
at drawing a cat, simply by including these common characteristics.
In computational thinking, these characteristics are known as patterns. Once we
know how to describe one cat we can describe others, simply by following this
pattern. The only things that are different are the specifics:

e oOne cat may have green eyes, a long tail and black fur

« another cat may have yellow eyes, a short tail and striped fur

Green Ginger
Yellow Black
Orange Tabby
/: /
: é
V/ 7,
é - 4”&

https://www.bbc.co.uk/education/guides/zxxbgk7/revision#glossary-zx9x6sg

Why do we need to look for patterns?

Finding patterns is extremely important. Patterns make our task simpler. Problems are
easier to solve when they share patterns, because we can use the same problem-
solving solution wherever the pattern exists.

The more patterns we can find, the easier and quicker our overall task of problem
solving will be.

If we want to draw a number of cats, finding a pattern to describe cats in general, eg
they all have eyes, tails and fur, makes this task quicker and easier.

We know that all cats follow this pattern, so we don’t have to stop each time we start
to draw a new cat to work this out. From the patterns we know cats follow, we can
quickly draw several cats.

-

-

What happens when we don’t look for patterns?

Suppose we hadn’t looked for patterns in cats. Each time we wanted to draw a cat, we
would have to stop and work out what a cat looked like. This would slow us down.

We could still draw our cats - and they would look like cats - but each cat would take
far longer to draw. This would be very inefficient, and a poor way to go about solving
the cat-drawing task.

In addition, if we don’t look for patterns we might not realise that all cats have eyes,
tails and fur. When drawn, our cats might not even look like cats. In this case, because
we didn’t recognise the pattern, we would be solving the problem incorrectly.

Recognising patterns

To find patterns in problems we look for things that are the same (or very similar) in
each problem. It may turn out that no common characteristics exist among problems,
but we should still look.

Patterns exist among different problems and within individual problems. We
need to look for both.

To find patterns among problems we look for things that are the same (or very similar)
for each problem.
For example, decomposing the task of baking a cake would highlight the need for us
to know the solutions to a series of smaller problems:

« what kind of cake we want to bake?

« what ingredients we need and how much of each
« how many people we want to bake the cake for

« how long we need to bake the cake for

e when we need to add each ingredient

e what equipment we need

Once we know how to bake one particular type of cake, we can see that baking another
type of cake is not that different - because patterns exist.

For example:
« each cake will need a precise quantity of specific ingredients

« ingredients will get added at a specific time
« each cake will bake for a specific period of time

Once we have the patterns identified, we can work on common solutions
between the problems.

S~

(]

/ Preheat oven to 190°C / Preheat oven to 180°C
Blend butter, sugar & flour @ Whisk all butter and sugar
Bake for 25 minutes Mix in eggs

& Whisk 300ml of cream Bake for 30 minutes

h

Preheat oven to temperature

@ Whisk quantity of ingredients

D Bake for time

Patterns may also exist within the smaller problems we have decomposed to.

If we look at baking a cake, we can find patterns within the smaller problems, too.
For example, for ‘each cake will need a precise quantity of specific ingredients’, each
ingredient needs:

identifying (naming), a specific measurement

Once we know how to identify each ingredient and its amount, we can apply that
pattern to all ingredients. Again, all that changes is the specifics.

https://www.bbc.co.uk/education/guides/zxxbgk7/revision/3#glossary-zp8thyc

What is abstraction?

Abstraction is one of the four cornerstones of Computer Science. It involves filtering
out — essentially, ignoring - the characteristics that we don't need in order to
concentrate on those that we do.

Computational thinking
Abstraction

v

000
0000

00| (0O
(X Ipmi X
o® 0O
o0C @0

Pattern recognition m

In computational thinking, when we decompose problems, we then look for patterns
among and within the smaller problems that make up the complex problem.

Abstraction is the process of filtering out — ignoring - the characteristics of patterns
that we don't need in order to concentrate on those that we do. It is also the filtering
out of specific details. From this we create a representation (idea) of what we are trying
to solve.

In pattern recognition we looked at the problem of having to draw a series of cats.
We noted that all cats have general characteristics, which are common to all cats, eg
eyes, a tail, fur, a liking for fish and the ability to make meowing sounds. In addition,
each cat has specific characteristics, such as black fur, a long tail, green eyes, a
love of salmon, and a loud meow. These details are known as specifics.

In order to draw a basic cat, we do need to know that it has a tail, fur and eyes. These
characteristics are relevant. We don't need to know what sound a cat makes or that it
likes fish. These characteristics are irrelevant and can be filtered out. We do need to
know that a cat has a tail, fur and eyes, but we don't need to know what size and
colour these are. These specifics can be filtered out.

From the general characteristics we have (tail, fur, eyes) we can build a basic idea of
a cat, ie what a cat basically looks like. Once we know what a cat looks like we can
describe how to draw a basic cat.

https://www.bbc.co.uk/education/guides/zttrcdm/revision#glossary-zx9x6sg
https://www.bbc.co.uk/education/guides/zttrcdm/revision#glossary-zp8thyc
https://www.bbc.co.uk/education/guides/zxxbgk7/revision

Why is abstraction important?

Abstraction allows us to create a general idea of what the problem is and how to solve
it. The process instructs us to remove all specific detail, and any patterns that will not
help us solve our problem. This helps us form our idea of the problem. This idea is
known as a ‘model’.

If we don’t abstract, we may end up with the wrong solution to the problem we are
trying to solve. With our cat example, if we didn’t abstract we might think that all cats
have long tails and short fur. Having abstracted, we know that although cats have tails
and fur, not all tails are long and not all fur is short. In this case, abstraction has helped
us to form a clearer model of a cat.

How to abstract

Abstraction is the gathering of the general characteristics we need and the filtering out
of the details and characteristics that we do not need.

When baking a cake, there are some general characteristics between cakes. For
example:
e acake needs ingredients

e each ingredient needs a specified quantity
e acake needs timings
When abstracting, we remove specific details and keep the general relevant patterns.

General patterns Specific details

We don't need to know what those

We need to know that a cake has ingredients ingredients are
We need to know that each ingredient has a We don’t need to know what that quantity
specified quantity is

We need to know that each cake needs a specified | We don't need to know how long the time
time to bake is

Creating a model

A model is a general idea of the problem we are trying to solve.

For example, a model cat would be any cat. Not a specific cat with a long tail and short
fur - the model represents all cats. From our model of cats, we can learn what any
cat looks like, using the patterns all cats share.

Green Ginger
Yellow Black
Orange Tabby
i / ?
4
¢ 4
/ &
/JI’,‘ ,”I‘r‘.

Similarly, when baking a cake, a model cake wouldn’t be a specific cake, like a sponge
cake or a fruit cake. Instead, the model would represent all cakes. From this model we
can learn how to bake any cake, using the patterns that apply to all cakes.

Once we have a model of our problem, we can then design an algorithm to solve it.

What is an algorithm?

Algorithms are one of the four cornerstones of Computer Science. An algorithm is a
plan, a set of step-by-step instructions to solve a problem. If you can tie
shoelaces, make a cup of tea, get dressed or prepare a meal then you already know
how to follow an algorithm.

Computational thinking
Decomposition Abstraction

Ny
O

000
0000

00| |00
o9 _|00
o® OO0
o0 @0

Pattern recognition

In an algorithm, each instruction is identified and the order in which they should be
carried out is planned. Algorithms are often used as a starting point for creating a
computer program, and they are sometimes written as a flowchart or in pseudocode.
If we want to tell a computer to do something, we have to write a computer program
that will tell the computer, step-by-step, exactly what we want it to do and how we want
it to do it. This step-by-step program will need planning, and to do this we use an
algorithm.

Computers are only as good as the algorithms they are given. If you give a computer
a poor algorithm, you will get a poor result — hence the phrase: ‘Garbage in, garbage
out.’

Algorithms are used for many different things including calculations, data processing
and automation.

"

-

https://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-z8s2fg8
https://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-zqbjq6f
https://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-z8xr7ty

It is important to plan out the solution to a problem to make sure that it will be correct.
Using computational thinking and decomposition we can break down the problem into
smaller parts and then we can plan out how they fit back together in a suitable order
to solve the problem.

This order can be represented as an algorithm. An algorithm must be clear. It must
have a starting point, a finishing point and a set of clear instructions in between.

There are two main ways that algorithms can be represented
- pseudocode and flowcharts. Most programs are developed using programming
languages. These languages have specific syntax that must be used so that the
program will run properly. Pseudocode is not a programming language, it is a simple
way of describing a set of instructions that does not have to use specific syntax.

Writing in pseudocode is similar to writing in a programming language. Each step of
the algorithm is written on a line of its own in sequence. Usually, instructions are
written in uppercase, variables in lowercase and messages in sentence case.

In pseudocode, INPUT asks a question. OUTPUT prints a message on screen.

A simple program could be created to ask someone their name and age, and to make
a comment based on these. This program represented in pseudocode would look like
this:

OUTPUT 'What is your name?'
INPUT user inputs their name
STORE the user's input in the name variable
OUTPUT 'Hello' + name
OUTPUT 'How old are you?'
INPUT user inputs their age
STORE the user's input in the age variable
IF age >= 70 THEN

OUTPUT 'You are aged to perfection!'
ELSE

OUTPUT 'You are a spring chicken!'

A flowchart is a diagram that represents a set of instructions. Flowcharts normally use
standard symbols to represent the different instructions. There are few real rules about
the level of detail needed in a flowchart. Sometimes flowcharts are broken down into
many steps to provide a lot of detail about exactly what is happening. Sometimes they
are simplified so that a number of steps occur in just one step.

https://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-zx9x6sg
https://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-zp8thyc
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-z8xr7ty
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zqbjq6f
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zbbnr82
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zrrf4wx
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zrrf4wx
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zq6dtfr
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-z8s2fg8
https://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zmcs4wx
https://www.bbc.co.uk/education/guides/zpp49j6/revision/3#glossary-z8s2fg8

Flowchart symbols

Flowchart symbols
Start or Stop The beginning and end points in the sequence.
Process An instruction or a command.
Decision A decision, either yes or no
Decision
Input or Cutput An input is data received by a computer. An

output is a signal or data sent from a computer.
Input/Output

Caonnectar A jump from one point in the sequence to
. another.
Direction of flow — Connects the symbols. The arrow shows the
l direction of flow of instructions.

A simple program could be created to ask someone their name and age, and to make
a comment based on these. This program represented as a flowchart would look like
this:

Output
‘What is your name?’

Input
User inputs their name

Store user’s input in name variable

Qutput
‘Hello’ + name

Output
How old are you?’

Input
User inputs their age
Store user's age in age variable

Is age >= 707 Output

“You are aged to perfection]’

e L sop
‘You are a spring chicken!’

https://www.bbc.co.uk/education/guides/zpp49j6/revision/3#glossary-zbbnr82

Lesson 5
Evaluating solutions

What is evaluation?

Once a solution has been designed using computational thinking, it is important to
make sure that the solution is fit for purpose.

Evaluation is the process that allows us to make sure our solution does the job it has
been designed to do and to think about how it could be improved.
Once written, an algorithm should be checked to make sure it:

e is easily understood — is it fully decomposed?

e is complete — does it solve every aspect of the problem?

« s efficient — does it solve the problem, making best use of the available resources
(eg as quickly as possible/using least space)?

e meets any design criteria we have been given

If an algorithm meets these four criteria it is likely to work well. The algorithm can then
be programmed.

Failure to evaluate can make it difficult to write a program. Evaluation helps to
make sure that as few difficulties as possible are faced when programming the
solution.

https://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-zx9x6sg
https://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-zp8thyc
https://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-zt8thyc

Computational thinking helps to solve problems and design a solution — an algorithm —
that can be used to program a computer. However, if the solution is faulty, it may be
difficult to write the program. Even worse, the finished program might not solve the
problem correctly.

Evaluation allows us to consider the solution to a problem, make sure that it meets the
original design criteria, produces the correct solution and is fit for purpose - before
programming begins.

Once a solution has been decided and the algorithm designed, it can be tempting to
miss out the evaluating stage and to start programming immediately. However,
without evaluation any faults in the algorithm will not be picked up, and the
program may not correctly solve the problem, or may not solve it in the best
way.

Faults may be minor and not very important. For example, if a solution to the question
‘how to draw a cat?’ was created and this had faults, all that would be wrong is that
the cat drawn might not look like a cat. However, faults can have huge — and terrible
— effects, e.qg. if the solution for an aeroplane autopilot had faults.

We may find that solutions fail because:

it is not fully understood - we may not have properly decomposed the problem
it is incomplete - some parts of the problem may have been left out accidentally
it is inefficient — it may be too complicated or too long

it does not meet the original design criteria — so it is not fit for purpose

A faulty solution may include one or more of these errors.

If computational thinking techniques are applied to the problem of how to bake a cake,
on decomposing the problem, it is necessary to know:

what kind of cake to bake?

what ingredients are needed, how much of each ingredient, and when to add it

how many people the cake is for

how long to bake the cake for?

what equipment is needed

A diagram of a further decomposition of ingredients would look like this:

https://www.bbc.co.uk/education/guides/zssk87h/revision/2#glossary-zx9x6sg
https://www.bbc.co.uk/education/guides/zssk87h/revision/2#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/zssk87h/revision/2#glossary-zggscdm
https://www.bbc.co.uk/education/guides/zssk87h/revision/2#glossary-zp8thyc
https://www.bbc.co.uk/education/guides/zssk87h/revision/3#glossary-zx9x6sg
https://www.bbc.co.uk/education/guides/zssk87h/revision/3#glossary-zp8thyc

Ingredient 2

Ingredient 1

When When
to add to add

At the moment, a diagram of the further decomposition of equipment would look like
this: the ‘Equipment’ part is not properly broken down (or decomposed). Therefore, if
the solution - or algorithm — were created from this, baking the cake would run into
problems. The algorithm would say what equipment is needed, but not how to use it,
so a person could end up trying to use a knife to measure out the flour and a whisk to
cut a lump of butter, for example. This would be wrong and would, of course, not work.
Ideally, then, ‘Equipment’ should be decomposed further, to state which equipment is
needed and which ingredients each item is used with.

o

Ingredient 3

Use with which Use with which Use with which
ingredient ingredient ingredient

The problem occurred here because the problem of which
equipment to use and which ingredients to use it with hadn’t been
fully decomposed.

https://www.bbc.co.uk/education/guides/zssk87h/revision/3#glossary-z8d3d2p

Computer Science Y7
Unit 2 Algorithms

Designhing an algorithm

An algorithm is a plan, a logical step-by-step process for solving a problem.
Algorithms are normally written as a flowchart or in pseudocode.

The key to any problem-solving task is to guide your thought process. The most useful
thing to do is keep asking ‘What if we did it this way?’ Exploring different ways of
solving a problem can help to find the best way to solve it.

When designing an algorithm, consider if there is more than one way of solving the
problem.

When designing an algorithm there are two main areas to look at:
« the big picture - What is the final goal?
« theindividual stages — What hurdles need to be overcome on the way to the
goal?

Understanding the problem

Before an algorithm can be designed, it is important to check that the problem is
completely understood. There are a number of basic things to know in order to really
understand the problem:

What are the inputs into the problem?

What will be the outputs of the problem?

In what order do instructions need to be carried out?

What decisions need to be made in the problem?

« Are any areas of the problem repeated?
Once these basic things are understood, it is time to design the algorithm.

Most programs are developed using programming languages. These languages have
specific syntax that must be used so that the program will run properly. Pseudocode is
not a programming language, it is a simple way of describing a set of instructions that
does not have to use specific syntax.

There is no strict set of standard notations for pseudocode, but some of the most
widely recognised are:

INPUT — indicates a user will be inputting something

OUTPUT - indicates that an output will appear on the screen

WHILE - a loop (iteration that has a condition at the beginning)

FOR — a counting loop (iteration)

REPEAT — UNTIL — a loop (iteration) that has a condition at the end

IF — THEN — ELSE — a decision (selection) in which a choice is made

any instructions that occur inside a selection or iteration are usually indented

Pseudocode can be used to plan out programs. Planning a program that asks people
what the best subject they take is, would look like this in pseudocode:

REPEAT
OUTPUT 'What is the best subject you take?'
INPUT user inputs the best subject they take
STORE the user's input in the answer variable
IF answer = 'Computer Science' THEN
OUTPUT 'Of course it is!'
ELSE
OUTPUT 'Try again!'
UNTIL answer = 'Computer Science'

A flowchart is a diagram that represents a set of instructions. Flowcharts normally
use standard symbols to represent the different types of instructions. These symbols
are used to construct the flowchart and show the step-by-step solution to the
problem.

https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zrrf4wx
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zq6dtfr
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zbbnr82
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-z8xr7ty
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-z8s2fg8
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-z3hrcdm
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zttc2hv
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zwyxvcw
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zxdhpv4
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/2#glossary-zdyxvcw
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/3#glossary-zqbjq6f
https://www.bbc.co.uk/education/guides/z3bq7ty/revision/3#glossary-z8s2fg8

Using flowcharts

Flowcharts can be used to plan out programs. Planning a program that asks people
what the best subject they take is, would look like this as a flowchart:

Start or Stop The beginning and end points in the sequence.

Frocess An instruction or a command.

Decision A decision, either yes or no.

Decision

Input or Output An input is data received by a computer. An

output is a signal or data sent from a computer.
Input/Qutput

Connector A jump from one point in the sequence to
. another.
Direction of flow —_— Connects the symbols. The arrow shows the

l direction of flow of instructions.

https://www.bbc.co.uk/education/guides/z3bq7ty/revision/3#glossary-zbbnr82

Using flowcharts

Flowcharts can be used to plan out programs. Planning a program that asks people
what the best subject they take is, would look like this as a flowchart

Input
‘Which is the best subject?’

Does answer = Output
‘Computer Science’? ‘Try again!’

{}uiput

‘Of course it is!’

https://www.bbc.co.uk/education/guides/z3bq7ty/revision/3#glossary-zbbnr82

Lesson 2

Why do we need searching algorithms?

We often need to find one particular item of data amongst many hundreds,
thousands, millions or more. For example, you might need to find someone’s phone
number on your phone, or a particular business’s address in the UK.

This is why searching algorithms are important. Without them you would have to look
at each item of data — each phone number or business address — individually, to see
whether it is what you are looking for. In a large set of data, it will take a long time to
do this. Instead, a searching algorithm can be used to help find the item of data you
are looking for.

Marco's Pizza Search h‘_ 0

So:ty

Cinemas Restaurants

[
4
-

n'm N |

* H = . @ ®H % B w & § % ¥ §® ¥F = & ®B WwW

Search algorithms prevent you from having to look through lots of data to find the information you
are searching for

There are many different types of searching algorithms. Two of them are serial
search and binary search

https://www.bbc.co.uk/education/guides/zgr2mp3/revision#glossary-zxtwhyc
https://www.bbc.co.uk/education/guides/zgr2mp3/revision#glossary-z8d3d2p

Serial search

Searching for a keyword or value is the foundation of many computer programs. The
most basic kind of search is a serial search.

Criteria are set up before the search begins. The search then starts with the first item
and then moves to each item in turn, until either a match is found or it reaches the end
of the data with no match found.

Example

Imagine that you have a database of sales made to customers. You need to deliver
the goods that customer number 150 has bought, so need to find their address in the
database.

The criterion is set first - Find the address for customer 150.

A serial search will begin at customer 1 and will search through each customer in turn
until it reaches customer 150. It will then output the address for this customer. If it does
not find customer 150, a message will be output to say that the customer is not found.
In pseudocode this would look like:

OUTPUT "Which customer number would you like to look up?"
INPUT user inputs customer number
STORE the user's input in the customer number variable
counter =1
(we need to count the number of records that we have searched through)
more records = True
(we need a flag to say if more records are available to search through
or if we have reached the end of the database)
WHILE more records = True:
IF counter = customer number THEN
OUTPUT customer address
Exit the loop
ELSE
add 1 to counter

As a flowchart, this would look like:

=

Input
‘Which customer number
would you like to look up?’

counter = 1

more_records = True

Does
more_records \
= True?

Qutput
customer
address

Does counter = YES
customer_number?

NO

Add 1 to counter

Binary search

Binary search is a faster method for searching for an item that is in an ordered list.
An ordered list is one where the sequence of items in the list is important. An
ordered list does not necessarily contain a sequence of numbers (eg 1, 2, 3, 4) or
characters (eg A, B, C, D). It might also contain, eg a list of names in alphabetical
order, a list of files from smallest to largest or a list of records from earliest to most
recent.

A binary search algorithm takes the data and keeps dividing it in half until it finds the
item it is looking for.

Example

Imagine that you have a database of customers and want to search for the customer
John Smith. We first need the database to be ordered into alphabetical order by
surname. We then search for the record ‘John Smith’ by surname.

The binary search will split the database in half, and compare the midpoint (the middle
name) to the name ‘John Smith’. It will see whether the midpoint comes before or after

https://www.bbc.co.uk/education/guides/zgr2mp3/revision/2#glossary-zqbjq6f
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/3#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/3#glossary-z2bhb9q

‘Smith’ and will throw away the set of records that doesn’t contain ‘Smith’ as a
surname. It will keep dividing the records in that way until it reaches two records left,
one of which is ‘John Smith’. It will then throw away the other record and output John
Smith’s details. Binary search effectively divides the data in half and throws away, or
‘bins’ the half that does not contain the search term.

In pseudocode this would look like:

OUTPUT "Which customer
INPUT user inputs John
STORE the user's input
customer found = False

do you want to find?"
Smith
in the customer name variable

(we need to create a flag that identifies if the customer is found)

WHILE customer found =

False:

Find midpoint of list

IF customer name =
customer found =

record at midpoint of list THEN
True

ELSE IF customer comes before the midpoint THEN
throw away the second half of the list
ELSE
throw away the first part of the list
OUTPUT customer details

As a flowchart, this would look like:

Input
‘Which customer do you want to find?'

customer_found = False

Does

customer_found
= True

Discard second
half of list

customer_found
= False?

Find midpoint of list

customer_name
at midpoint of

Qutput
customer
details

customer_name

before midpoint?

Discard first
half of list

r 9

F 9

https://www.bbc.co.uk/education/guides/zgr2mp3/revision/3#glossary-z8xr7ty
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/3#glossary-zqbjq6f

Different algorithms might be best used in different situations. For example,
sometimes an algorithm won’t work with a particular set of data, and in some instances
one algorithm will be much quicker or more efficient than another.

One of the main advantages of a serial search is that it is a very simple algorithm,
which makes it very easy to write a computer program to carry it out. It can also be
used on any set of data regardless of type and whether or not it is sorted.

The biggest problem with a serial search is that it is very slow. For example, when
searching through a database of everyone in the UK to find a particular name, it might
be necessary to search through 60 million names before you found the one you
wanted.

One of the main advantages of a binary search is that it is much quicker than a serial
search because the data that needs to be searched halves with each step. For
example, it is possible to search through 1024 values and find the one you want within
10 steps, every time.

The biggest problem with a binary search is that you can only use this if the data is
sorted into an order.

https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-zxtwhyc
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-zcr72hv
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-zbbnr82
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-z9c2mp3
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-z83nr82
https://www.bbc.co.uk/education/guides/zgr2mp3/revision/4#glossary-z8k6tfr

Lesson 3

Why do we need sorting algorithms?

A sorting algorithm will put items in a list into an order, such as alphabetical or
numerical order. For example, a list of customer names could be sorted into
alphabetical order by surname, or a list of people could be put into numerical order by
age.

Sorting a list of items can take a long time, especially if it is a large list. A
computer program can be created to do this, making sorting a list of data much easier.
There are many types of sorting algorithms. Two of them are bubble sort and bucket
sort.

Bubble sort

A bubble sort algorithm goes through a list of data a number of times, comparing two
items that are side by side to see which is out of order. It will keep going through the
list of data until all the data is sorted into order. Each time the algorithm goes through
the list it is called a ‘pass’.

Example

Imagine that you have a list of people who you want to sort by age, from youngest to
oldest. A bubble sort can do this.

The list of ages is:

41,15, 17, 32, 18, 28, 77 and 54
First pass

The highlighted numbers are the numbers that are being compared.
41, 15,17, 32, 18, 28, 77,54

This is the list before it is sorted.
41, 15, 17, 32, 18, 28, 77, 54

The first two numbers are compared. 15 is smaller than 41 so they switch places.
15,41, 17, 32, 18, 28, 77, 54

The next two numbers are compared. 17 is smaller than 41 so they switch places.
15,17,41, 32, 18, 28, 77, 54

The next two numbers are compared. 32 is smaller than 41 so they switch places.
15,17, 32,41, 18, 28, 77, 54

The next two numbers are compared. 18 is smaller than 41 so they switch places.
15,17, 32,18, 41, 28, 77, 54

The next two numbers are compared. 28 is smaller than 41 so they switch places.

https://www.bbc.co.uk/education/guides/z2m3b9q/revision/2#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/z2m3b9q/revision/2#glossary-zxtwhyc

15,17, 32, 18, 28, 41, 77, 54

The next two numbers are compared. 41 is smaller than 77 so no change occurs.
15,17, 32,18, 28, 41, 77,54

The next two numbers are compared. 54 is smaller than 77 so they switch places.

15,17, 32, 18, 28, 41, 54, 77
This is what the list looks like after the first pass.
The list is now more ordered than it was originally, but it isn’t yet fully in order of

youngest to oldest. The list needs to go through another pass to compare the numbers
again, so it can be sorted further.

Second pass
15,17, 32,18, 28, 41,54, 77

This is what the list looks like after the first pass.
15,17, 32,18, 28, 41, 54, 77

The first two numbers are compared. 15 is smaller than 17 so no change occurs.
15,17, 32, 18, 28, 41, 54, 77

The next two numbers are compared. 17 is smaller than 32 so no change occurs.
15,17, 32,18 28, 41, 54, 77

The next two numbers are compared. 18 is smaller than 32 so they switch places.
15,17, 18, 32, 28, 41, 54, 77

The next two numbers are compared. 28 is smaller than 32 so they switch places.
15,17, 18, 28, 32, 41, 54, 77

The next two numbers are compared. 32 is smaller than 41 so no change occurs.
15,17, 18, 28, 32, 41, 54, 77

The next two numbers are compared. 41 is smaller than 54 so no change occurs.
15,17, 18, 28, 32, 41, 54, 77

The next two numbers are compared. 54 is smaller than 77 so no change occurs.
15,17, 18, 28, 32, 41,54, 77

This is what the list looks like after the second pass.

The set of data is now in order from youngest to oldest, but the algorithm does not
know this yet as it made some changes in the second pass. The algorithm will only
recognise that the list is in order if it makes no changes in a pass. The algorithm
therefore needs to run for a third pass to compare the numbers again. As no changes
will be made, the algorithm will then recognise that the data is in order.

If the data being sorted is a large set of data, it may take several passes to get the
data sorted.

Lesson 4

Sequencing in algorithms

An algorithm is a plan, a set of step-by-step instructions to solve a problem. There
are three basic building blocks (constructs) to use when designing algorithms:
e sequencing

« selection

« iteration

These building blocks help to describe solutions in a form ready for programming.

What is sequencing?

Algorithms consist of instructions that are carried out (performed) one after another.
Sequencing is the specific order in which instructions are performed in an

algorithm.

For example, a very simple algorithm for brushing teeth might consist of these steps:

1. put toothpaste on toothbrush
2. use toothbrush to clean teeth
3. rinse toothbrush

Each step is an instruction to be performed. Sequencing is the order in which the
steps are carried out.

1
2

3.

N o g bk w NP

It is crucial that the steps in an algorithm are performed in the right order -
otherwise the algorithm will not work correctly. Suppose the steps for the teeth-
cleaning algorithm were in this sequence:

. use toothbrush to clean teeth
. put toothpaste on toothbrush
rinse toothbrush

A toothbrush would still be used to clean the teeth and toothpaste would still be put on
the brush. But because steps 1 and 2 are in the wrong sequence the teeth wouldn’t
get cleaned with the toothpaste, and the toothpaste would be wasted.

A human would realise they had forgotten to add toothpaste at the start of the process,
but a computer would not know that anything was wrong.

A computer can only do what it is programmed to do. If the steps are programmed in
the wrong sequence, the computer will perform the tasks in this sequence — even if
this is incorrect.

An algorithm to get a computer to draw a square on the screen might consist of these
steps:

draw a 3 cm line

turn left 90 degrees

draw a 3 cm line

turn left 90 degrees

draw a 3 cm line

turn left 90 degrees

draw a 3 cm line

The steps in this algorithm are in the correct sequence. This algorithm would result
in a perfect square.

https://www.bbc.co.uk/education/guides/zsf8d2p/revision/2#glossary-z8d3d2p
https://www.bbc.co.uk/education/guides/zsf8d2p/revision/2#glossary-zwv634j

If there was a mistake when designing the algorithm, and the steps in
thiz sequence were placed like this:

1.
2.

]
e

draw a 3 cm line
turn left 90 degrees

draw a 3 cm line

4. turn left 90 degrees
5.
8
7

draw a 3 cm line

. draw a 3 cm line

. turn left 90 degrees

This algorithm would create this shape, rather than a perfect square:

Because step 6 is in the wrong sequence (it should switch with step 7), this algorithm
failed. However, fixing the algorithm - and the square - is easy, because there are only
seven steps to look through for the error.

Complex algorithms may have hundreds, if not thousands, of steps. It is critical to
make sure all steps in the algorithm are in the correct sequence before programming
begins. Once programmed, trying to find an instruction in the wrong sequence can be

extremely difficult.

Representing sequencing

There are two ways of representing algorithms:
e pseudocode
« aflowchart

Representing sequencing in pseudocode

Writing in pseudocode is rather like writing in a programming language. Each step
of the algorithm is written on a line of its own, in sequence.

Consider this simple algorithm for calculating how old a dog is in dog years. It contains
three steps, all in sequence:
e ask how old the dog is in human years

« multiply human years by seven to find out how old the dog is in dog years
e print the answer on the screen
In pseudocode, the algorithm would look like this:

OUTPUT 'How old is your dog?'

INPUT user inputs their dog's age in human years
STORE the user's input in the human years variable
dog years = human years * 7/

OUTPUT 'In dog years, your dog is aged' + dog years

Representing sequencing in a flowchart

Input
‘How old is your dog?’

dog_years =
human_years * 7

Output
‘In dog years, your dog
is aged’ + dog_years

Lesson 5

Selection

Selection in algorithms

An algorithm is a plan, a set of step-by-step instructions to solve a problem. There
are three basic building blocks (constructs) to use when designing algorithms:
e sequencing

« selection
« iteration
These building blocks help to describe solutions in a form ready for programming.

What is selection?

Selection is a decision or question.

At some point in an algorithm there may need to be a question because the algorithm
has reached a step where one or more options are available. Depending on the answer
given, the algorithm will follow certain steps and ignore others.

Selection allows us to include more than one path through an algorithm.

Without selection, different paths would not be included in algorithms. This means that
the solutions created would not be realistic.

Algorithms consist of a set of instructions that are carried out (performed) one after
another. Sometimes there may be more than one path (or set of steps) that can be
followed. At this point, a decision needs to be made. This point is known as selection.

For example, a simple algorithm can be created to determine correct bus fares. The
steps could be:

1. ask how old you are
2. if you are under 16, pay half fare
3. otherwise pay full fare

The decision comes in step 2. If you are aged less than 16, one fare is charged.
Otherwise, a different fare is charged.

IF...THEN...ELSE

Selection allows several paths to be included in an algorithm. In algorithms (and in
programming), selection is usually represented by the
instructions IF, THEN and ELSE.

e |IF represents the question

« THEN points to what to do if the answer to the question is true

o ELSE points to what to do if the answer to the question is false

Using this method, the fare-related algorithm now reads like this:
1. ask how old you are

2. IF you are under 16, THEN pay half fare
3. ELSE pay full fare

If you try this algorithm using 15 as your age, the answer to the question at step 2 is
true, so the algorithm tells you to pay half fare.

If you try the algorithm using 16 as your age, the answer to the question at step 2 is
false, so the algorithm tells us to pay full fare.

Two different paths are followed according to the answer given to a particular question.

Representing selection

There are two ways of representing algorithms:
e pseudocode
« aflowchart

Representing selection in pseudocode

Writing in pseudocode is rather like writing in a programming language. Each step
of the algorithm is written on a line of its own, in sequence.

Look at this simple six-step algorithm for comparing your dog’s age with your own:
« ask how old the dog is in human years

« multiply human years by seven to find out how old the dog is in dog years
e print the answer on the screen
e ask how old you are

« if the dog’'s age in dog years is older than your age, say ‘Your dog is older than
you!’

o otherwise, say ‘Your dog is not older than you.’
In pseudocode, the algorithm would look like this:

OUTPUT 'How old is your dog?'
INPUT user inputs their dog's age in human years
STORE the user's input in the human years variable
dog years = human years * 7
OUTPUT 'In dog years, your dog 1is aged ' + dog years
OUTPUT 'How old are you?'
INPUT user inputs their age
STORE the user's input in the user age variable
IF dog years > user age THEN
OUTPUT 'Your dog is older than you!'
ELSE
OUTPUT 'Your dog is not older than you.'

NOTE: when using pseudocode, you do not need to use THEN with IF and ELSE -
although you can if you want to.

Representing selection in a flowchart

A flowchart uses a diagram to explain the steps of an algorithm.

Consider this simple six-step algorithm for comparing your dog’s age with your own:
ask how old the dog is in human years

multiply human years by seven to find out how old the dog is in dog years
print answer on the screen
ask how old you are

if the dog’s age in dog years is older than your age, say ‘Your dog is older than
you!’

otherwise, say ‘Your dog is not older than you.’
In a flowchart, this sequence would look like this:

Input
‘How old is your dog?'

Input
‘How old are you?’

dog_years =
human_years * 7

Output
‘In dog years, your dog

is aged' + dog_years

Output
*¥our dog is older
than you!”

Is dog_years >
human_age?

Output
“Your dog is not
older than you!’

The ELSE IF instruction allows there to be more than two paths through
an algorithm. Any number of ELSE IF instructions can be added to an algorithm. It
is used along with other instructions:

IF represents a question

THEN points to what to do if the answer to the question is true

ELSE IF represents another question

THEN points to what to do if the answer to that question is true

ELSE IF represents another question

THEN points to what to do if the answer to that question is true

ELSE points to what to do if the answer to the question is false

Using this method, the bus fare algorithm could be improved like this:
ask how old you are

IF you are under 5, THEN pay no fare

ELSE IF you are under 16, THEN pay half fare
ELSE IF you are an OAP, THEN pay no fare
ELSE pay full fare

a bk~ w0 Ddh ke

Lesson 6

lteration

lteration in algorithms

An algorithm is a plan, a set of step-by-step instructions to solve a problem. There
are three basic building blocks (constructs) to use when designing algorithms:
e sequencing

e selection
e iteration
These building blocks help to describe solutions in a form ready for programming.

What is iteration?

Iteration in programming means repeating steps, or instructions, over and over
again. This is often called a ‘loop’.

Pop up a new rat m

SCORE

-) Increase score

Algorithms consist of instructions that are carried out (performed) one after another.
Sometimes an algorithm needs to repeat certain steps until told to stop or until a
particular condition has been met.

Iteration is the process of repeating steps.

For example, a very simple algorithm for eating breakfast cereal might consist of these
steps:
e put cereal in bowl

e add milk to cereal

e spoon cereal and milk into mouth

o repeat step 3 until all cereal and milk is eaten
e rinse bowl and spoon

Iteration allows algorithms to be simplified by stating that certain steps will
repeat until told otherwise. This makes designing algorithms quicker and simpler
because they don’t need to include lots of unnecessary steps.

A simple algorithm can be created for cleaning teeth. Suppose a person has ten top teeth. To
make sure that every one of the top teeth is cleaned, the algorithm would look something like
this:

put toothpaste on toothbrush

use toothbrush to clean tooth 1
use toothbrush to clean tooth 2
use toothbrush to clean tooth 3
use toothbrush to clean tooth 4
use toothbrush to clean tooth 5
use toothbrush to clean tooth 6
use toothbrush to clean tooth 7

© © N o s~ wDdh R

use toothbrush to clean tooth 8
10.use toothbrush to clean tooth 9
11.use toothbrush to clean tooth 10
12.rinse toothbrush

Steps 2 through to 11 are essentially the same step repeated, just cleaning a different
tooth every time. Iteration can be used to greatly simplify the algorithm. Look at this
alternative:

put toothpaste on toothbrush

use toothbrush to clean a tooth

move onto next tooth

repeat steps 2 and 3 until all teeth are clean

a bk~ wDdh ke

rinse toothbrush

This algorithm is much simpler. However, there is a problem — how do we know when
all teeth are clean (step 4)? A condition is needed to solve this problem.

A condition is a situation that is checked every time an iteration occurs.

The following is a 12-step algorithm for cleaning a person’s upper teeth, and
supposes that they have ten top teeth:

put toothpaste on toothbrush

use toothbrush to clean tooth 1
use toothbrush to clean tooth 2
use toothbrush to clean tooth 3
use toothbrush to clean tooth 4
use toothbrush to clean tooth 5
use toothbrush to clean tooth 6
use toothbrush to clean tooth 7

© © N o g bk wDdPRE

use toothbrush to clean tooth 8
10. use toothbrush to clean tooth 9
11.use toothbrush to clean tooth 10
12.rinse toothbrush

The condition, in this case, will be to check if the number of teeth cleaned equals ten.
If that condition is False (the number of teeth cleaned is less than ten), then another
iteration occurs. If the condition is True (the number of teeth cleaned equals ten), then
no more iterations occur.

It is also important to keep a count of how many teeth have been cleaned.

https://www.bbc.co.uk/education/guides/zg46tfr/revision/2#glossary-zxdhpv4

A A

A counter is used to do this.

The counter can be used to see if the condition has been met. This is known
as testing the condition. The test sees whether the condition is True or False.

If a condition and a counter are included, the algorithm would look like this:

set number_of teeth cleaned to 0

put toothpaste on toothbrush

use toothbrush to clean a tooth

increase number_of teeth_cleaned by 1

if number_of_teeth_cleaned < 10 then go back to step 3
rinse toothbrush

The counter is called number_of teeth cleaned, and the condition is ‘if
number_of teeth_cleaned < 10'. This is very similar to selection as two routes are
created. However, with iteration there is a loop back into the algorithm, rather than
creating and keeping two separate routes as would occur with selection.

Selection

Using iteration, the number of steps has reduced from 12 in the first teeth-cleaning
algorithm to just six in the algorithm with iteration.

Most adults have 32 teeth in total. To amend the original algorithm to clean 32 teeth,
another 22 steps (one for each additional tooth) would have to be added to the first
algorithm - making this algorithm 34 steps long. However, in the algorithm with
iteration, all that is needed is to change the condition from ten teeth to 32. The total
number of steps in that algorithm remains unchanged:

set number_of teeth cleaned to 0

put toothpaste on toothbrush

use toothbrush to clean a tooth

increase number_of teeth_cleaned by 1

if number_of teeth_cleaned < 32 then go back to step 3

L A

rinse toothbrush

There are two ways of representing algorithms:
e pseudocode
o aflowchart

Writing in pseudocode is rather like writing in a programming language. Each step
of the algorithm is written on a line of its own, in sequence.

Consider this simple six-step algorithm for cleaning your teeth:
set number_of teeth cleaned to 0

put toothpaste on toothbrush

use toothbrush to clean a tooth

increase number_of teeth cleaned by 1

if number_of_teeth_cleaned < 32 then go back to step 3

o 0k~ whPE

rinse toothbrush

With each iteration, a decision needs to be made as to whether to continue iterating
or not. Decisions are represented as selection.

https://www.bbc.co.uk/education/guides/zg46tfr/revision/4#glossary-zrrf4wx

In pseudocode, the algorithm would look like this:

number of teeth cleaned = 0
put toothpaste on toothbrush
REPEAT

procedure clean tooth

number of teeth cleaned = number of teeth cleaned + 1
UNTIL number of teeth cleaned = 32
rinse toothbrush

Representing iteration in a flowchart

A flowchart uses a diagram to explain the steps of an algorithm.
In a flowchart, the algorithm would look like this:

number_of_teeth_cleaned =0

Put toothpaste on toothbrush

Clean tooth

number_of teath_cleaned =
number of teeth cleaned + 1

Does number_
of_teeth_cleaned
=327

Rinse toothbrush

Computer Science Y7
Unit 3 Binary

Lesson 1
Binary

How computers see the world

There are a number of very common needs for a computer, including the need to store
and view data.

Computers use electrical signals that are on or off, so they have to see everything as
a series of binary numbers. This data is represented as a sequence of 1s and Os
(on and off).

All data that we want a computer to process needs to be converted into this
binary format.

What is binary?

Binary is a number system that only uses two digits: 1 and 0. All information that
is processed by a computer is in the form of a sequence of 1s and 0s. Therefore, all
data that we want a computer to process needs to be converted into binary.

| The proc@ss of [=ot100101 %

= 01010110 l

WMk

’.JV” it Wy
ll."-“"l i)1 e [= 01000010

The binary system is known as a ‘base 2’ system. This is because:

« there are only two digits to select from (1 and 0)

e when using the binary system, data is converted using the power of two.

Converting from binary to denary

People use the denary (or decimal) number system in their day-to-day lives. This
system has 10 digits that we can use: 0, 1, 2, 3,4, 5,6, 7, 8 and 9.

Converting from binary to denary

To convert a binary number to denary, start by writing out the binary place values. In
denary, the place values are 1, 10, 100, 1000, etc — each place value is 10 times
bigger than the last. In binary, each place value is 2 times bigger than the last (ie
increased by the power of 2). The first few binary place values look like this:

128 64 32 16 8

Working out the value of 1010 1000:
128 64 32 16 8

1 0 1 0 1
1x128 + 0x64 + 1x32 + 0x16 + 1x8 +

128 + 0+ 32 + 0+ 8+

S0 1010 1000 in binary is equal to 168 in denary.

4

0x4 +

0+

2

0x2 +

0+

0x1

Converting from denary to binary

There is a very simple method to convert a denary number into a binary number.
Let’s take the number 199.

Start by writing out the first few binary place values (128, 64, 32, 16, 8, 4, 2, 1).

128 64 32 16 8 4 2 1
Start at the far left point and say “Can 128 be taken away from 199?”. If it can, do
that.

199 — 128 = 71. Because 128 could be taken off, put a 1 in the “128’ place value
column:

128 64 32 16 8 4 2

1

Now repeat for 64: 71 —64 =7
128 64 32 16 8 4 2

1 1

And again for 32: 7 — 32 won’t work, so put a 0 in that place value column.
128 64 32 16 8 4 2

1 1 0

Try again for 16: 7 — 16 won’t work, so add a 0 to that place value column.

128 64 32 16 8 4 2

1 1 0 0

Next is 8: 7 — 8 won’t work. Add a 0 to the ‘8’ place value column.
128 64 32 16 8 4 2

1 1 0 0 0

Try again for 4. 7 — 4 = 3, so add a 1 to the ‘4’ place value column.
128 64 32 16 8 4 2

1 1 0 0 0 1

Nexttry 2: 3—-2 =1, so add a 1 to the 2’ place value column.
128 64 32 16 8 4 2

1 1 0 0 0 1 1

And finally, 1: 1 -1 =0 - add a 1 to the ‘1’ place value column.
128 64 32 16 8 4 2

This means that 199 as a binary number is 1100 0111.

Note that binary numbers are usually written in blocks of four, separated by a space
(eg 0111 1011). In denary, numbers are often written in blocks of three (eg 6 428
721).

Lesson 2

Representing text, images and sound

Representing data

All data inside a computer is transmitted as a series of electrical signals that are
either on or off. Therefore, in order for a computer to be able to process any kind of
data, including text, images and sound, they must be converted into binary form. If
the data is not converted into binary — a series of 1s and 0s — the computer will simply
not understand it or be able to process it.

Representing text

When any key on a keyboard is pressed, it needs to be converted into a binary number
so that it can be processed by the computer and the typed character can appear on

the screen.

Q

oo I oy oo

A code where each number represents a character can be used to convert text into
binary. One code we can use for this is called ASCII. The ASCII code takes each
character on the keyboard and assigns it a binary number. For example:

o the letter ‘a’ has the binary number 0110 0001 (this is the denary number 97)

o the letter ‘b’ has the binary number 0110 0010 (this is the denary number 98)
o the letter ‘c’ has the binary number 0110 0011 (this is the denary number 99)

Text characters start at denary number 0 in the ASCII code, but this covers special
characters including punctuation, the return key and control characters as well as the
number keys, capital letters and lower case letters.

ASCII code can only store 128 characters, which is enough for most words in
English but not enough for other languages. If you want to use accents in European
languages or larger alphabets such as Cyrillic (the Russian alphabet) and Chinese
Mandarin then more characters are needed. Therefore another

code,called Unicode, was created. This meant that computers could be used by
people using different languages.

Images also need to be converted into binary in order for a computer to process them
so that they can be seen on our screen. Digital images are made up of pixels. Each
pixel in an image is made up of binary numbers.

If we say that 1 is black (or on) and 0 is white (or off), then a simple black and white
picture can be created using binary.

To create the picture, a grid can be set out and the squares coloured (1 — black and 0
— white). But before the grid can be created, the size of the grid needs be known. This
data is called metadata and computers need metadata to know the size of an image.
If the metadata for the image to be created is 10x10, this means the picture will be 10
pixels across and 10 pixels down.

This example shows an image created in this way:

0
0
o
L
1

a
1
1
1
1

The system described so far is fine for black and white images, but most images need
to use colours as well. Instead of using just 0 and 1, using four possible numbers will
allow an image to use four colours. In binary this can be represented using two bits per

pixel:
e 00— white
e 01 -blue
e 10 —green
e 11 -red

While this is still not a very large range of colours, adding another binary digit will
double the number of colours that are available:
e 1 bit per pixel (0 or 1): two possible colours

2 bits per pixel (00 to 11): four possible colours

3 bits per pixel (000 to 111): eight possible colours
4 bits per pixel (0000 — 1111): 16 possible colours

16 bits per pixel (0000 0000 0000 0000 — 1111 1111 1111 1111): over 65 000
possible colours

The number of bits used to store each pixel is called the colour depth. Images with
more colours need more pixels to store each available colour. This means that images
that use lots of colours are stored in larger files.

Image quality is affected by the resolution of the image. The resolution of an image
is a way of describing how tightly packed the pixels are.

In a low-resolution image, the pixels are larger so fewer are needed to fill the space.
This results in images that look blocky or pixelated. An image with a high resolution
has more pixels, so it looks a lot better when you zoom in or stretch it. The downside
of having more pixels is that the file size will be bigger.

Sound needs to be converted into binary for computers to be able to process it. To do
this, sound is captured - usually by a microphone - and then converted into
a digital signal.

An analogue to digital converter will sample a sound wave at regular time intervals.
For example, a sound wave like this can be sampled at each time sample point:

_
L=

Value
O = M @ & " I N B W@
4

Time

The samples can then be converted to binary. They will be recorded to the nearest
whole number.

Time sample 1 2 3 4 5 6 7 8 9 10
Denary 8 3 7 6 9 7 2 6 6 6
Binary 1000 0011 0111 0110 1001 0111 0010 0100 0110 0110

If the time samples are then plotted back onto the same graph, it can be seen that the
sound wave now looks different. This is because sampling does not take into account
what the sound wave is doing in between each time sample.

-
o
r o

Value

¥ i ouns e

D = M W R " ™ N B W
o i i i i i i i i

Time

This means that the sound loses quality as data has been lost between the time
samples. The way to increase the quality and store the sound at a quality closer to the
original, is to have more time samples that are closer together. This way, more detail
about the sound can be collected, so when it's converted to digital and back to
analogue again it does not lose as much quality.

The frequency at which samples are taken is called the sample rate, and is measured
in Hertz (Hz). 1 Hz is one sample per second. Most CD-quality audio is sampled at 44
100 or 48 000 KHz.

Compression

Why compress files?

Processing power and storage space is very valuable on a computer. To get the best
out of both, it can mean that we need to reduce the file size of text, image and
audio data in order to transfer it more quickly and so that it takes up less storage
space.

In addition, large files take a lot longer to download or upload which leads to web
pages, songs and videos that take longer to load and play when using the internet.
Compression addresses these issues.

Any kind of data can be compressed. There are two main types of compression: lossy
and lossless.

Lossy compression

Lossy compression removes some of a file’s original data in order to reduce the file
size. This might mean reducing the numbers of colours in an image or reducing the
number of samples in a sound file. This can result in a small loss of quality of an image
or sound file.

A popular lossy compression method for images is the JPEG, which is why most
images on the internet are JPEG images. A popular lossy compression method for
sounds is MP3. Once a file has been compressed using lossy compression, the
discarded data cannot be retrieved again.

Lossless compression

Lossless compression doesn’t reduce the quality of the file at all. No data is lost, so
lossless compression allows a file to be recreated exactly as it was when originally
created.

There are various algorithms for doing this, usually by looking for patterns in the data
that are repeated. Zip files are an example of lossless compression.

The space savings of lossless compression are not as good as they are with lossy

compression.

Computer Science Y7

Unit 4 Safety and
Responsibility

Online dangers

The internet is a fantastic resource that helps us to learn, share, communicate and
find entertainment. It has billions of users who use it for legitimate reasons. However,
there are others who use the internet for illegal and unsavoury purposes.

There are several dangers that we might come across when online:
e malware
e phishing
e cyberbullying

Taking simple precautions can help to reduce or prevent exposure to such dangers.
Malware

Malware (short for malicious software) are programs that install and run on your
computer without your knowledge or consent. Malware is often downloaded from email
attachments or websites that are not properly protected. Some websites are designed
to trick you into downloading and installing malware. Once installed, malware usually
(but not always) causes harm to the computer or user by deleting data or gaining
access to personal information.

Some malware is designed to copy itself and spread to other computers via email
attachments that are sent from the infected computer. This type of malware is known
as a virus. Another type of malware spies on users’ activities, usually to steal financial
details and passwords. This type of malware is known as spyware. Other types of
malware include trojans and zombies.

Once infected, it can be difficult to rid a computer of malware. Special programs called
anti-virus software are required to clean malware off a computer.

=
t’

-

(5o

Phishing

You might receive emails from someone pretending to be someone you know. The
emails are designed to trick you into giving away personal information, such as your
usernames and passwords. For example, an email might appear to be sent from a
social media website. It might say that a password needs resetting, and might provide
a link to reset it. The link would lead to a fake website which looks exactly like the real
site. This site will capture your details, allowing an unsavoury character access to your
accounts.

Phishing emails are often quite easy to spot. Although at first glance they may look
very much like a genuine email from a company or website, on closer examination
they often contain spelling or grammatical errors. Always remember that it is rare that
a website will genuinely send you an email asking for your username and password.

Most people use the internet safely and responsibly, but some use it for illegal or
unsavoury activities. They do it to make money or to behave badly in a situation where
they think that no-one can identify them.

It is not always possible to be sure who sends emails or posts a comment to a social
media account. Many people pretend to be someone else online, sometimes for fun
but sometimes because they intend to harm others, through cyberbullying, theft
or trolling.

Trolling is the term given to people who visit other peoples’ social media accounts
and leave distasteful messages.

Cyberbullying is the bullying of another person using the internet, mobile phones and
other digital devices. Cyberbullying can take the form of posts on forums or social
media, text messages or emails, all with the aim of hurting the victim.

There are a number of ways to protect against malware:
e antivirus software
o firewall
e showing caution, by:

o not opening emails from senders who we do not recognise
o notinstalling programs downloaded illegally

Antivirus software protects the computer from malware such as viruses and
spyware. Antivirus software scans the computer for known malware. If it finds
malware, it safely removes it. To remain effective, antivirus software must be regularly
updated so that it can recognise and remove as many forms of malware as possible.

A firewall is either a piece of hardware or software that monitors
communications coming in from and going out to the internet. Both forms work
on a similar basis. The firewall looks for unauthorised communications from malware.
Any such communications are blocked by the firewall, preventing the malware from
completing its task.

Through the course of a day you may receive emails from senders that you do not
recognise. Such emails often contain malware hidden in attachments, or links to fake
websites where malware can be downloaded and installed without your
knowledge. Delete such emails without opening them.

Lots of programs and games that can be illegally downloaded using file-sharing tools
and websites contain malware. As well as breaking the law by downloading these, you
could be installing malware onto your computer.

Staying safe from phishing

Phishing emails are often quite easy to spot. If in doubt about an email, delete it
immediately. Do not follow any links contained in the email. Instead, go to the
website directly, and try to log in there.

= m e - r we i v

:Iot addressed oDear user, Bad spelling
0 you ; i]
and punctuation

you'rée account will be DELETED
unless u confrim your username

and password IMMEDIATELY! Asking for
Link goes : : Q
I Click here!! J personal

information

£ &

Phishmaster
419

Staying safe from unsavoury characters and cyberbullying

The easiest way to stay safe online is to stay in control of personal information given
out.

Never disclose important details such as name, telephone number, address or school.
Never accept someone as a ‘friend’ on social media simply because they claim to
know another friend of yours.

Always be cautious about what you say online.

Never agree to meet anyone in person that you’ve only known online.

If somebody does start sending you messages that offend or upset you, tell an adult
that you trust.

Protection from online bullying and harassment

Cyberbullying is an extremely unpleasant and upsetting experience. There are
several authorised websites that offer advice on how to stay safe online and what to
do if cyberbullying occurs:

« BBC Webwise

e Childline

e« ThinkUKnow run by the Child Exploitation and Online Protection Centre (CEOP)

The Bullying UK helpline is available on 0808 800 2222, and Childline can be
contacted on 0800 1111.

Bias and reliability

The internet contains a wealth of information. This information can be used to learn
about new things or to verify facts.

However, much of the information on the internet is either biased in some way or
incorrect.

Information that is biased or incorrect loses its value. When information has no value,
it is of no use to us.

We need to be able to distinguish between information that is valuable (of use
to us) and that which is not.

Biased information is information that is written from a particular perspective or
point of view.

When we write, we often — either purposefully or accidentally — introduce bias.
Information that contains bias may be:
e personal opinion

e a statement that has no factual basis
« prejudiced in favour of or against a person, product, situation or idea

Look at the following examples of information about a film:
“ This statement is clearly
personal opinion, and as such should be treated with caution. Someone else
might say the film is poor.

“* ”

There is no factual basis to this statement. How can the person who wrote it know
what people will think in the future?

. ” This information contains prejudice —
the writer clearly has a passion for animation. Someone who does not like
animation may say all animated films are poor.

In each case, bias has distorted the information about the film.

MY MOVIE REVIEW o
o~

““Raiders of the .
Last Bark is the ROBOCAT

worst film ever”

What is reliability?

Incorrect information is information that is wrong, out of date or inaccurate.

Websites may contain information that is incorrect for any of these reasons:
wrong — the facts stated are incorrect
out of date — the facts may have been correct when the website was produced,
but are no longer correct
inaccurate — the facts may be largely correct, but may contain some errors

When information is correct, it is ‘reliable’. Reliable information has value. The less
reliable the information, the less valuable it is.

Recognising bias and unreliability

Biased information also loses its value. Information of little value may:
mislead us

misinform us
cause us to make an incorrect deduction
cause us to make a poor decision

Suppose we used the internet to research the health benefits of cleaning our teeth.
One website, owned and produced by a dental company, might tell us that we need
to clean our teeth ten times every day. Another website, written by an individual,
might state that cleaning our teeth is a waste of time.

By following the advice from the first one, we might spend more money than we
need to on teeth-cleaning products and damage our teeth by cleaning them too
much. By following the advice from the other, we might suffer from poor dental
hygiene.

Biased information is influenced by a point of view. When analysing information for
bias, there are certain factors to look for:

e Source - who has produced the information? Information from an
authoritative, well-known organisation or person is likely to have value.
Information from wikis and blogs may be less valuable because they are not
authoritative — anyone can update a wiki or write a blog. As such, they may contain
bias or inaccuracies. Remember, though, that a company may overstate claims
about their products or services, whilst understating those of their competitors.

e Opinion or fact — does the website state facts or opinions? Opinions are
points of view, not facts. Whilst opinions should be considered and may be
interesting, as information they have less wvalue than facts.

o Statements without facts — does the website contain statements that cannot
be backed up by facts? Such statements are opinions, and have little value.

o Date of publication —when was the website was last updated? Websites that
have not been updated for a long time may no longer be accurate.

Lesson 3

The law and ethics

Computers and the law

Computers are fantastic - they help us to learn, share, communicate and find
entertainment. However, it is also possible for computers to be used to aid illegal
activities. An understanding of computer-related laws in the United Kingdom is needed
to make sure we stay on the right side of the law.

Computers might be used unlawfully in many ways, for example:

« allowing someone to illegally share your personal data

« helping to steal financial information, such as credit card numbers or bank account
details

e helping to illegally copy and distribute films, television programmes and music

« extorting information or blackmailing someone

Additionally, the internet allows people to commit crimes remotely, for example a
hacker could gain access to a computer on the other side of the world. Laws are
required to help deter such activities.

There are three laws to consider:
« Computer Misuse Act
« Copyright, Designs and Patents Act
« Data Protection Act

The Computer Misuse Act attempts to discourage people from using computers for
illegal purposes. There are three separate parts to the Act:

1. ltisillegal to access data stored on a computer unless you have permission to
do so. Unauthorised access is often referred to as hacking.

2. ltis illegal to access data on a computer when that material will be used to
commit further illegal activity, such as fraud or blackmail.

3. ltisillegal to make changes to any data stored on a computer when you do not
have permission to do so. If you access and change the contents of someone’s
files without their permission, you are breaking the law. This includes installing
a virus or other malware which damages or changes the way the computer
works.

The maximum punishment for breaking this law is a £5000 fine or several years’
imprisonment.

However, one key part of the law is that intent must be proved. If a computer is not
well protected, someone could accidentally access its data without meaning to.
Someone might also accidentally change a document without realising it. For anyone
to be found guilty, it has to be shown that they intentionally accessed and changed
data.

The Copyright, Designs and Patents Act exists to protect our creations.

When anyone creates something, they own it. What they create might include:
e a picture, drawing or photograph

e avideo, television programme or film
e text, such as a book, article or report
e agame

Copyright is a legal means of ensuring that content creators can protect what they
create. Copyright is applied automatically - it is not necessary to register
copyright or to use a © symbol. Work is automatically protected by copyright unless
the copyright holder chooses to give that right away.

Copyright gives the copyright holder exclusive rights to publish, copy, distribute and
sell their creation. No one else can use the work without permission. Copyright on a
piece of work lasts for a long time, although the rules about how long are quite
complicated and vary from country to country.

When you buy something, such as a book, film or music CD, the copyright holder
grants permission for you to use it as part of the sale. This is called a licence. The
licence is generally only for you to use.

When using computers, unless you have permission with regard to a particular
copyrighted material, it is illegal to:

e make copies
e publish

o distribute

« sell copies

This applies to any copyrighted material, such as music, films, games and television
programmes. The internet has made it extremely easy to access copyrighted material
illegally. If you download a music track, film, game or programme without the
copyright holder’s permission, you are breaking the law.

Supermarkets earn their money by selling food and other products. If someone takes
their products without paying, the supermarket doesn’t make any money. In the same
way, musicians, photographers, film makers and artists earn their money by selling
products. If someone takes their products without paying, the person who
created the work doesn’t make any money.

Keygen/Crack

1288

There are some situations where it is legal to copy, publish, distribute or sell material.
These are:
e when you are the copyright holder

e when you have the copyright holder’s permission
« when the copyright holder has chosen to give up their copyright

Data Protection Act

It is increasingly common for personal details to be stored on computers. The Data
Protection Act exists to protect such details. This personal data includes items such
as:

« name and address

« date of birth

« medical records

e school and employment records
« religion

Personal data is private and should only be accessible by authorised people. Also,
digital files stored on computers can be easy to access, copy and share. Protection
is needed to make sure that our personal data is kept private and not altered or
deleted. The Data Protection Act exists to ensure our data is properly looked
after.

In addition, everyone has the right to see what data is held about them by an
organisation, and to have that data corrected or deleted if incorrect.

